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In this contribution we shall first introduce the Flux Across Surfaces (FAS)
theorem, placing it in the general context of the Quantum Scattering Theory.
Then we shall review briefly the theory of resonances in non-relativistic
Quantum Mechanics and outline a proof of the FAS theorem for non-relativis-
tic potential scattering, which covers also the case in which there is a zero energy
resonance.
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1. SETTING UP THE PROBLEM

The “flux across surfaces” theorem is of fundamental importance in the
formulation of scattering theory in Quantum Mechanics. It gives a relation
between what is observed in a scattering experiment and the basic object
that is discussed in every textbook in Quantum Mechanics, i.e., the scatter-
ing amplitude. In abstract scattering theory, for scattering of a particle by
a time independent potential, the scattering cross-section is essentially
defined to be the probability P(X, ) that the particle is detected by an
apparatus with active surface 2 placed very far away from the region of
interaction when the particle (or rather the beam of particles) is prepared at
time ¢ = 0 in a state Y.
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Essentially, one argues that this probability is related to the corre-
sponding asymptotic outgoing state i, by the relation

PE ) = Wbl dk (1.1)

where C; is the cone generated by X' with vertex in a point P which belongs
to the region of interaction (the precise choice of the point is irrelevant if
the active surface is sufficiently far away) and y is the Fourier transform
of Y (so that k is the momentum of the outgoing particle in suitable units).

From (1.1) the textbook relationship between the differential cross
section and the scattering amplitude can be deduced, with the help of a
statistical assumption on the beam of incoming particles. We refer to the
book of ref. 1, Chap. 7, or to ref. 11.

The problem of deducing (1.1) from more basic principles had a first
answer through Dollard’s theorem;"? this theorem states that, assuming
existence and asymptotic completeness of the wave operator

W, =s— lim el Ho!

t—>+o

(where H = Hy+V, V is the potential, and H, the free hamiltonian), one
has

t— o0

lim [ WP dx=] WP dk.

In order that this answer be satisfying, one must assume that P(X, ;) can
be identified with the probability that the particle is detected in the cone C;
in the distant future.

However the experimental set up by which one measures the cross
section is more closely related to the probability that the particle is detected
by the active surface X at any time in the time interval during which the
detector is active.

The physics of the scattering experiments is better described through a
collection of distant detectors, surrounding the region in which the inter-
action takes place, firing at a random time; the experimenter records the
distribution of the location in which the firing has taken place.

A natural mathematical object connected with this physical description
is the quantum mechanical flux. It is defined by introducing the probability
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density current j¥* =Im(y} Vi,), which satisfies the continuity equation

op
DeaVih=0, =l
whenever ), satisfies the Schrodinger equation. It is natural to think that
the probability that the particle crosses in the interval of time (z, t +dt) the
element dS on the surface of X be given by

(j-n)ds dt (1.2)

where 7 is the normal versor to X' (oriented outwards with respect to the
region in which the interaction takes place).

There are two difficulties in this interpretation. First, the current at
fixed time is a distribution which is not, in general, integrable over a
surface (a manifold of codimension one). This can be cured by requiring
some Sobolev regularity to the inintial datum, e.g., Y, € H*(R?), compare
ref. 2, Section 2.

More serious can be the fact that the flux at the time ¢ and at the point
x € 2 may be not outgoing; therefore the quantity in (1.2) may be negative,
and not interpretable as a probability. On physical ground one expects
that, if the detectors are placed “sufficiently far” from the scattering
region, the flux be outgoing, but by the invariance under time translation
of the entire theory one cannot expect this to be true uniformly in the
initial data. Notice that this holds even for the case of a free particle.

The relevance of this point of view was recognized by Combes et al.©®
in 1975 and led them to formulate the “flux across surfaces conjecture,”

e., the statement that this physical intuition is correct if one lets the
detectors be placed at an infinite distance and if some “‘reasonable” condi-
tions are placed on the potential and on the initial state. Under these con-
ditions (we return on this point later on) the conjecture was formulated in
the following way: the following identification holds true

Oaux(Z, Wo) = lim  lim dt (]"’f n) dS

R—o00 T)—o00 JT)

= | 1F okl dk (1.3)

where & is Fourier transform, X' is the intersection of the cone C; with
the surface of the sphere of radius R and »n is the normal to X oriented
outwards (with respect to the cone). Notice that o4, (2, ;) as defined by
(1.3) is independent of 7;.
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Remark. The conjecture says more. The following identity also
holds

G0 (Z W) = lim  Tim [ de [ Gremas
T Zr

Roow T,—>©

—lim lm [ de [ 1c#mias, (1.4)
T Zr

Roow T,->©

i.e., the flux is asymptotically outgoing.

While the fundamental importance of the identity (1.3) was recognized
by Combes, Newton, and Stockhamer in 1975, the corresponding theorem
was proved only recently, first for the free case (physically not interesting
but mathematically not triviall) by Daumer e? al.” and then, under various
assumptions, by several Authors, with different techniques. For example, in
ref. 23, the authors make use of the time-independent formulation of scat-
tering theory and perform a thorough analysis of the properties of the
(generalized) eigenfunctions of the Hamiltonian and of the corresponding
Lippmann-Schwinger equation. In refs. 2 and 3, the authors use strategies
taken from Geometrical Scattering Theory and theorems about time
asymptotics of the evolution of the wave function, a method originated by
Enss, see, e.g., ref. 21, based on the geometrical insight that, roughly
speaking, wave functions orthogonal to the bound states and with support
moving away from the scattering region, after a sufficiently long time will
not feel the potential any more, and will thus move freely.

Remark. Other proofs have been inspired by the interpretation of
Quantum Mechanics through Bohmian Mechanics, which gives an intuitive
pictures of the flux in terms of crossings of the given surface by the path of
the Bohmian particles.”® Or by the equivalence, as far as position mea-
surements are concerned, between Quantum Mechanics and the Stochastic
Mechanics first described by Nelson"® and then developed, especially for
scattering processes, by Carlen,® who gives a detailed study of the asymp-
totic behaviour pathwise. The proof through Stochastic Mechanics given
by Posilicano and Ugolini® is particularly interesting as an alternative
proof. Both these proofs, through Bohmian and Stochastic Mechanics, give
actually more information, namely pathwise behaviour, and may shed
some light on the problem of describing the correlation in the detection of
several particles. A conjecture for the N-body problem was also given in a
tentative way in ref. 6, and a more refined study of this problem is going to
appear in ref. 14.
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All these proofs are given under different assumptions, both on the
potential and on the state of the system at time zero (or the asymptotic
state at = +o0). All share the assumption that there is no zero energy
resonances (the proofs that contain assumptions on the asymptotic out-
going state require that its energy spectrum is bounded away from zero,
and it will be clear later on that such kind of states cannot “feel” a zero
energy resonance).

It is common lore in physics that a quantum resonance is a sort of
quasi-bound state. In this spirit, a convenient definition of zero-energy
resonance is the following.

Definition 1.1. We say that H=—A+V has a zero-energy reso-
nance (with respect to H,) if there exist a distributional solution ., of the
Schrédinger equation (—A+V) ., =0 such that (x>, € L*(R?) for
any y > 1/2 but not for y = 0. Here (x> = (1 +|x|?)'/? as usual.

In other words, V.., fails to be an eigenstate since it does not decrease
fast enough at infinity. It is shown in ref. 9 that the previous definition is
equivalent, for a large class of potentials, to the more sophisticated and
new fashioned ones.

It is relevant to notice that if there is a zero energy resonance then the
resolvent (H —k?)~!, regarded in an appropriate sense (see Section 3), has
a polar singularity in k= 0. By computing the Laplace transform of the
resolvent, one gets interesting information about the time evolution: in
particular, when a zero energy resonance is present the decay of the wave-
function for large times is slower than usual. More precisely, Jensen and
Kato proved that for any { € #,.(H) one has for ¢ — oo that

" = (int) 2 Y, Yres ) Yoo + (4im) 2 12 B+ 0(1730%) (1.5)

where the first term is present only if H has a zero energy resonance, B, is
a suitable operator and the remainder term is small in a sense to be made
precise, see ref. 17.

As far as the flux-across-surfaces problem is concerned, it is clear from
(1.5) that the resonant case has some specific features. Indeed the assump-
tion of absence of a zero energy resonance, or the absence in the initial
state of energy spectrum near the lower end of the continuum part (the
scattering regime concerns anyway the orthogonal complement of the
bound states) is not without reason. Since the dynamics of the asymptotic
states is free, the lower part of the energy spectrum is made of asymptotic
states of very low momentum; therefore this states move away from the
interaction region ‘““very slowly”’ and the limit in (1.3) may not be achieved
or, if achieved, may be different.
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Given the order of the limits which are taken in (1.2) (first 7, — oo and
then R — o0) one expects that this would not happen. But in any case this
problem suggests that the case of a zero energy resonance should have a
special treatment.

Notice that the map Y, — 04, (2, ¥,) is not continuous in the Hilbert
space topology, and therefore density theorems do not apply. Moreover,
in presence of zero-energy resonances the the usual mapping properties of
the (inverse of') the wave operators (to the extent that the outgoing state
inherits the smoothness properties of the state at time zero) fail to hold.®*

In order to get an insight into this problem, in ref. 20 Panati and Teta
treat the case of a point interaction in R®. This model allows to find a very
explicit expression for the resolvent and the evolution unitary group, as
well as explicit conditions for the presence of a zero-energy resonance.
Therefore the validity of (1.2) can be verified in a very explicit form; Panati
and Teta found that in this special example of interaction, the flux across
surface theorem holds even in presence of a zero energy resonance and
without limitations on the support in energy of the initial state (some
smoothness assumptions on the initial state are required for technical
reasons).

The result is independent from the number of points where the point
interactions are placed. On the other hand, it has been shown in ref. 15 that
a large class of potentials can be approximated arbitrarily well by point
interactions placed in a finite but very large number of points, properly
distributed in space.

This suggests that the theorem is true in presence of a zero energy
resonance also in potential scattering, under suitable assumption on the
potential. And that the proof could be given adapting, with suitable modi-
fications, the proof for point interactions. The difficulty lies in the fact that
explicit estimates are no longer available, and one has to find the proper
weaker estimates that hold in potential scattering and are still sufficient to
complete the proof.

The paper of ref. 9, the contents of which are briefly reported in this
note, provides such estimates, building on results of Jensen and Kato!”
on the analysis of resonances at the bottom of the continuous energy
spectrum.

2. SETTING UP THE MATHEMATICAL PROBLEM

We shall discuss non-relativistic quantum mechanical scattering from a
time-independent potential ¥(x), x € R’. We shall denote by H, the free
hamiltonian that we shall take to be (in suitable units) H, = —4. We shall
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assume that the potential V' is such that the hamiltonian H, defined as
H=H,+V, is essentially self-adjoint on the domain of H,, that it has
neither positive eigenvalues nor singular continuous spectrum and that the
absolutely continuous part of the spectrum is the interval [0, 400).

These assumptions are in particular satisfied if V' belongs to the class
(I), for n> 2. By that we mean that ¥ belongs to L*(R?), is locally Holder
continuous except for a finite number of points, and that there exist R, > 0,
C,>0 and €>0 such that |[V(x)|<C,|x|" for |x| > R,. Moreover,
under this assumption the wave operators W, = s—lim, _, , , e""e™"" exists
and are complete, i.e., the operator S = W W_ is unitary.

With the notation

U =e™, U? =e o, V. = U, Yo € 0,.(H),

one has the existence of an element ,,(1,) of the Hilbert space L*(R?)
such that

tim [, —U Yl = 0.

At this point, the proof of the Flux Across Surfaces (FAS) theorem
has been given along two different lines. The first one relies on the time-
independent theory of scattering, as developed by Kato and Ikebe and
others, which is based on a detailed study of the generalized eigenfunctions
corresponding to the continuous part of the spectrum of H.

The second one relies on the time-dependent approach initiated by
Enss and that has became to be known as “geometrical scattering theory;”
this approach is based on detailed estimates on the propagation properties
in space of U, as compared to U’. This second method has the great
advantage of soliciting physical intuition, and therefore is more apt for a
visual description of the process that takes place. The role of the estimates
which are needed to carry out the proofs is therefore more transparent, and
the conditions on the potential are more clearly justified. And it may be
more easily extended to the case of the N-body problem, because it leads to
a more intrinsic separation among the channels and to a better use of the
channel hamiltonian.

On the other hand, the geometric method relies more on the fact that
at very large times the “true” motion becomes very close (in a suitable
sense) to the free one, and therefore it leads naturally to assumptions on
the outgoing states. We consider this a drawback, since the experimenter
has at his disposal the preparation of the state at “time zero” but is unable
to intervene on the state at a time remote in the future.
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Remark. We consider the limit £ -+ o0 as a mathematical device to
obtain formulas that are manageable, since the preparation of the experi-
ment and its unfolding take place at finite times. Of course, this is justified
if the convergence to the limit in (1.3) is sufficiently fast, and this requires
in both methods delicate estimates. On the opposite, we will not consider
the limit # » — oo, and this is the reason why we shall discuss only proper-
ties of the wave operator and not of the S-matrix.

Both methods rely on the fact that the theorem is valid for the free
case (V'=0) and the proof for the free case relies on stationary phase
techniques. The two approaches differ substantially in obtaining the esti-
mates necessary to prove the same result for the interacting case.

In proving the FAS theorem in the case of a zero energy resonance we
shall follow the procedures of stationary scattering theory, for which the
deep analysis by Jensen and Kato of the low energy behaviour of the gen-
eralized eigenfunctions is available.

We first sketch the proof of the FAS theorem in the case V' =0 by
using very explicitly the properties of the free propagation kernel.

Proposition 2.1. Let V' =0. If the initial state is represented by a
function in the Schwartz space &(R?) the FAS relation (1.3) holds true.

We follow the proof appearing in ref. 13.

Proof. For the free propagation one has

- =p)? 3

V)= dye ™ Quin) ()

Gy 2

= "(in n//0<;>+e @rit) [ e " (e "= () dy

=a(x, 1)+ f(x, t). (2.1)

In (2.1) we have separated a term (o) which we expect to have the leading
role (for free motion, asymptotically the momentum should be ratio of
distance to time, in suitable units) and a term () with vanishing contribu-
tion for ¢ — co.

This type of splitting will play a major role also in the interacting case.

By the definition of j(x) one has
~ (x
i (%)

) =243 * LR (x 1)+ Ry(x. 1), 2.2)

t
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where R,, R,, explicitly given below, will give a negligible contribution to
the flux in the scattering limit. The explicit form of R;, R, is

R/(x,t)=Im <t‘41%‘ <)—;> VW, <)—;>>, R, =Im(B* Va+a*VB+ B*Vp).

We first verify that the first term in (2.2) gives the correct result. Indeed
one computes

© » 2
im | dr| ™|y, <E> (x-n)do
R—ow JT Zr t
s N R 2
—tim [ de[ |, <—“">‘ R*dR
R— o JT 2R t

= lim "k dIk [ (R d2
- L o (k)| die. (2.3)

Here we have performed the change of variable x = Rw, where |w| =1, and
we have set R*w-n do = dQ. Notice that the change of variables k =% =22
means, in particular, d |k| = —R¢? dt.

The remaining terms R, and R, can be estimated as follows: there
exists a positive constants C;, C, and a number 0 <€ < 1, such that for R

and ¢ large enough the following holds:

sup |R;(x, )| S Cit'TRTE (i=1,2), 24

xeSg

where S = {x e R*: |x| = R}. This implies that the corresponding contri-
bution to the flux is integrable in ¢ uniformly in R and goes to zero in the
limit R — oo.

The estimate in (2.4) can be obtained by integration by parts over the
variable y, using a stationary phase argument and the identity, valid for
any positive g € N,
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and recalling that
2 2
Ton<L.
€ -Di<

The FAS relation (1.3) is thus proved for i, € Z(R?). |

Remark. The estimates given above depend crucially on the non-
relativistic dispersion dispersion law H(k) = %2 In the relativistic case the
analogous of the FAS theorem still holds, but the proof is substantially
more complicated, see ref. 12 for the case of the Dirac equation.

3. A SKETCH OF THE PROOF

In this section we shall sketch a proof of the FAS theorem which
includes the case of a resonance at zero energy. A more detailed version of
this proof will be published elsewhere.®

The main tool in our analysis is the fact that the operator H can be
“diagonalized,” for the potentials we are considering, by means of the
solutions @(x, k) of the Lippmann—Schwinger (LS) equation,

—i |kl x—yl

__ pik-x __ €
Plx, k) =e fR3 An |x—y|

V(y)D(y,k)dy, |)}|i~mw (D(x, k)—e™ ) =0.
3.1)

It is well-known, after ref. 16, that this equation has a unique solution such
that #,(x) = @(x, k) —e’*™ is a continuous function vanishing at infinity.
In other words, the function #,(x) is the unique solution in the space of
continuous functions vanishing at infinity of the equation

1 —i 1kl x5

e .
i jR3 Tl V(y)e*rdy, (3.2

(I+GV) n = g g(x)=—

where G, is the right inverse of —4—x? in %'(R?), given by convolution
with G, (x) = e™™/|x|. For the classical results on the LS equation one can
see ref. 23 and references therein.

For our purposes it is more convenient to regard (3.1) as an equation
in the weighted Sobolev space H™*, defined by

H™(RY) = {ue &' (R%) : [(1+]x]>)"2 (1— )" u| > < + o0}

In this spaces equation (3.1) has still a unique solution (for suitable values
of m,s), and the two solutions can be identified. The main advantage
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of the latter formulation is that the the map x> (—4+x%) 7", ke C,,
regarded as a map with values in the space of operators between weighted
Sobolev spaces, can be continued as a continuous map to the closed upper
half plane.!” This will lead to a general definition of zero-energy resonance
and resonance function.

It is part of a common lore in scattering theory to think of a resonance
as a complex pole of the resolvent for Im x < 0 (on the “unphysical sheet™).
An analytic continuation of the resolvent below the entire real axis in x is
only possible for exponentially decreasing potentials; for a large class of
potentials (e.g., dilation-analytic) the analytic extension is possible in a
sector with vertex in the bottom of the continuous spectrum. In such cases,
one can define non-zero resonances as poles of the continuation of the
resolvent. But this is not possible for resonances at the bottom of the con-
tinuous spectrum. Without entering in too fine details (see refs. 9 and 17)
we recall that for a general class of potentials the following holds:

Denote by .# the kernel of (1+G,V) in H"~'/>=¢ for € >0. (This
space is independent on the choice of ¢, provided ¢ is not too large.) The
zero eigenspace of the operator —A4+V in L*(R?) (bound states with zero
energy) is a subspace of .# and its complement in .# is at most one-
dimensional.

When this complement is not empty, its elements are called zero-
energy resonance functions and the system is said to have a zero-energy
resonance. Moreover ¢ € .4 belongs to LX(R?) iff (V, ¢> = 0. If zero is not
an eigenvalue of H, we can fix uniquely a canonical resonance function
by imposing the normalization condition <V, ¥, > = (4r) /2. If zero is an
eigenvalue of H, an additional condition is required in order to fix uniquely
a canonical resonance function, see ref. 17.

In scattering theory one is interested in solving the Lippmann—
Schwinger equation. This amounts to inverting the operator 1+ G,V for k¥
on the real axis. According to ref. 17 this can be done continuously for
x € R\ {0}, with the following asymptotic expansion for x — 0, valid if the
potential satisfies suitable assumptions.

Lemma 3.1. If there is a zero energy resonance with canonical
resonance function y,, one has the following asymptotic expansion for
k—>0,keR, :

res

(1 +GKV)_1 = K_ZPOV_iK_1(< ) V'//res> l//res _POVG3VP0V)

+Cy+KC, +O(k?) (3.3)
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where C,, C, are suitable operators, P, is the projection operator in L*(R?)
on the zero eigenspace of H and G; is the convolution operator with kernel
24nG,(x, y) = |x— y|>. The remainder is small in the sense of the norm of
operators between suitable weighted Sobolev spaces.

Remark. It should be remarked that (3.3) is an asymptotic expan-
sion on the positve real axis, and the presence of the factors x ! and x 2 do
not correspond to poles of an analytic function but rather only to “polar-
like” singularities on the real axis.

By exploiting (3.3) an asymptotic expansion for the Lippman—Schwinger
eigenfunctions can be obtained. Indeed, denoting by {y;},_, any
orthonormal basis for the null space of —A+V in L*(R?) (if zero is not an
eigenvalue for H the corresponding terms should be omitted), one gets

77k=(1"‘G|k|V)_1 8k
=i 2, <oV v

(<gk’ I/lpres> l/ll't‘,s _POVG3VP0ng) + (9(1)

W 34

valid as |k| — 0. The second-order polar singularity appearing in () is only
apparent, since the corresponding “residue’ is

K8 Vibj» =XGV 1,V =V 1,GVy; 5 =—<V 1,y;5 =0,

where we used the fact that any function ¢ € # belongs to L*(R®) iff
V,¢>=0. The previous observation is the key ingredient to prove the
following lemma (see ref. 9 for a more precise statement).

Lemma 3.2. Let 7, be defined as 7, = @(x, k) —e’*® where &(x, k)
is the unique solution of the Lippmann-Schwinger equation such that #, is
continuous and vanishes at infinity. Under suitable assumptions on V,
there exist complex numbers {r;};_, _,, such that

e ="o K™ Yo+ 2. 15 117 0+ 9, k) (3.5
j=1

where ry =iV, Y., » and the map k — p(-, k) from R*\ {0} to H"~* (with
s large enough) has a bounded asymptotic expansion as |k| — 0. If zero is
not an eigenvalue of H, then the corresponding terms should be omitted.

The previous lemma provides us relevant information about the
behaviour of the generalized eigenfunctions of H in the neighborhood of
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k =0. We shall use it in the estimates by which we extend the proof of the
theorem FAS to the potentials for which a zero-energy resonance is
present.

Notice that Lemma 3.5 provides also relevant information about the
asymptotic outgoing state ¥,. Indeed, focusing for simplicity on the case
in which zero is a resonance but not an eigenvalue for H, one has

Vou () = LRS D(x, k)* Yo (x)(2m) /> dx

— (k) +é+ [, ol o) 2m) " dx, (3.6)

where r = —i(2n) >V, Y, >* Wreo» Yo >. The expansion (3.6) shows the
typical singular behaviour of the asymptotic outgoing state, as compared
with the state at time zero, when the hamiltonian has a zero energy
resonance.

Remark. Notice that the polar singularity of y,,, disappears when-
ever Y, satisfies the “pseudo-orthogonality”’ condition (Y, ¥,> =0. An
analogous condition appears in the case of a point interaction hamiltonian,
see ref. 20.

The regularity of the generalized eigenfunctions away from the origin
in k has been studied in much detail in ref. 23. They proved the following.

Lemma 3.3. LetV e(l),,n>=3. Then:

(i) For every fixed xeR® the function @,(x,-) belongs to
C"*(R*\ {0}) and the partial derivatives 0;®,(x, k) for every multindex
ae N? with |¢|<n—2 are continuous with respect to xeR® and ke
R*\ {0}.

(i) for every compact set K = R? containing the origin, and for every
multindex a with |«| < #—2 there are constants C, Cx , such that

Sup |¢+(x9 k)l < CK:
ke IRS\K,xe R’ -
sup [07@.(x, k)| < C o (1+|x])".

keR\K, xeR®

We use now the information contained in Lemmas 3.2 and 3.3
to sketch the proof the FAS theorem for hamiltonian operators with a
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zero-energy resonance. The expansion of the solution 1,(x) in terms of the
solutions of the Lippman—Schwinger equation reads

V() = Qm) 22 [ | e D, K) P (K) dk

= @y ([ e G dlt e n(, ) ) i
=ax, 1)+ p(x, 1), 3.7

where we have used the relation W, = & ~'#, between the wave operator W, ,
the Fourier transform # and the Friedrichs map &%, which diagonalizes the
projection of the hamiltonian on the absolutely continuous part of its
spectrum.

Since the current j can be written as

j=Im(a* Va+a* VB + B* Va+ B*Vp), (3.8)

in view of the fact that the theorem FAS holds for the free case (which
corresponds to f=0), the proof of the theorem in the interacting case
amounts to the proof that

lim j‘”f 17, (x, £)-n| do =0, (3.9)
R-w T Jrg

where j, = j—Im(a* Va).

To prove (3.9) one can proceed essentially as in the free case, using
integration by parts and stationary phase techniques, once has enough
control of the smoothness and asymptotic behaviour in k of ¥, (k) and of
D(x, k).

Both are controlled by the properties of #(x, k); the properties for k
away from the origin are summarized in Lemma 3.3, while the asymptotic
expansion for k — 0 is described in Lemma 3.2.

We shall restrict attention from now on to the case in which there are
no bound state at the bottom of the continuum spectrum. If one or more
such bound states are present, the estimates follow similar patterns.

In estimating the integral of j, we shall separate the contribution in
n(x, k) and (k) for small values of k from that at large values. This
corresponds to extract the singular part of these terms, so that one has

(X, 1) = 0peg (X, 1) + Oging (X, 1) (3.10)
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where

a.reg(x; t) = J ei(k‘x)_ith <¢out(k) _m _lkl >=

and

2
—IKl

i~ x) — ik
g (5, 0) = [ 401

We have subtracted a term proportional to e in order to be able to do

the (gaussian) integrations explicitly. Similarly, from the LS equation one
has

p.t)=[ 2 rGryi dy (3.11)

where (omitting a factor (27)3/?)

F(-x ya t) 1ng l(x ya t)+ sing, 2(x ya t)+ eg(xa ya t) (312)

with
T 25, 5 0) = 1 1o Yru(9) [ €W HBmD =2 1 2
T 105, 5 0) = Fo Yrea(9) [ ™ ©HBmDHE £, () 1|
L5, 33 1) = [ e WHHBDD £ (R (7 4 p(p, K)) dk
where

filk) = l//m(k)—| i€ W (3.13)

so that on the singular part one can do the (gaussian) integration explicitly.
We shall make repeatedly make use of the following simple lemmas

Lemma 3.4. Let % be the linear space of functions on R* defined
by the following condition:

L={feS"®R):feLl ) f(y) el VieL'}.
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Define ¢ ,(x, 1) = [ e™*e~*' £ (k) d°k. Then for every function f € £ and
for every 0 < < 1 there is a constant ¢, , such that the following inequal-
ity holds

l¢,(x, ) < 0737 <i>ﬂ, (3.14)

|x]
fort>1T,>0.

Notice that & = C,_(R?), as a consequence of the Riemann—Lebesgue
lemma.

Proof. We prove (3.14) for =0 and for u=1. The case 0 < u< 1
follows from an interpolation argument. In the case =0, Eq. (3.14) is
verified because

x
—i(3-

b 0= (e ) =€ M min =2 [ () ay,

so that

|6,Cx, D < Ct=2| £l

To prove (3.14) for u = 1 notice that one has, for ¢, y € R?

elay) — (—i) |q|—1 <1V >ei(q-y)
lgl

so that, by integration by parts and standard density arguments
. S i(q- q
=il [ e (L9, ) ey
R lq]

whenever the right hand side is finite. This gives

|x] C <

Sorxol<am X[l T f)+e T 0. f (v dy.
r=1

Since by assumption y, f (y) and V 7 belong to L'(R*) we have proved
(3.14) also for u=1. |

Lemma 3.5. Let f(x)= Ssz f(kw) dow the angular average of f. Let

df
ar ()

%= { e 1 J00l < Cly=, < C<x>“}.
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If f € %, the following holds

!

‘ J‘ —I(K t+x|x|)f(K) dK I |+t

Proof. Define

2
Kt+ K |x|
= |x|+¢, K)= ———

x| {09 =

One has, denoting with a prime the derivative with respect to x
' <inf{1, x}, & <2,
Integrating by parts and noticing that asymptotically for large values of k¥

1 ”n
_:K_l’ é_NK 2

(O

one completes the proof. ||

Remark. Lemma 3.4 says that for functions in ¥ we can
“exchange” some weaker decrease at ¢t — oo in order to have a better
decrease for R — 0. Notice that a decrease in time as ¢~*/? is not necessary
for integrability.

The previous lemmas are used to control the behaviour at large R of
the integral of j; over time and over the sphere of radius R in R® once one
can prove that the regular part of the integrand belongs to the space .%,.

As for the part that is singular for |k| — 0, in view of the explicit polar
form of the singularity, one has at disposal explicit estimates, which are
obtained by straightforward gaussian integration. We recall them (C,, is a
suitable constant).

. . x| \#
U‘ et(k«x)t—lkzt—kz Ikl—l dk < C” le—l t—1/2 <|_\/|> ,
t

je—ik2t+i|k||x—y|—k2 |k|71 dk SC,,til <|X_J’|>”, 0<u<2,

je—ik2t+i|k| x—y|—k? |k|_2 dk| < C”t_l <|X—J’|
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To prove the FAS Theorem, i.e., that (3.9) is satisfied, it remains to prove
that the functions

2
—Ikl

F1(K) = Yo () =1 %

R L) =k k), f3() =1k (fi(k)— £1(0)),

(3.15)

belong to the space .%,. If this is the case, one can use the previous esti-
mates to prove (3.9). Indeed, the only term that cannot be controlled using
the previous estimates is

jo(x, 1) = = Im [( V) s ys 1) dy ) ( YO i) dy)}
] ] To0e ey Lo

V(P)V () Yres(¥) Yres(¥')
Ix—yl lx—y'|?

=C%J‘dyjdy’

X Im[¢cr(x_ya t)* ¢cr('x_y,; t)]’

where we have used the reality of ., and we define ¢,, as
¢cr(x_y, t) = J‘g_i(kzt"'m IX—yI—kZ) |k|_2 dk.

One more gaussian integration leads to the following estimate

C
P (x—y; 1) =~ (7). _iten +7(x, 1)
\ﬂ J1+it

where

C u
|r(x,r)|<7”<@>, _1<u<o.
t

The property of the second term is sufficient to prove the vanishing of its
contribution for R — co. As for the first term, one can use the bound, for

ilx—
7 = tx—)l

J1+it

2 2 C
[Im(e**%2)] < 7178 (1 =312+ 1 = 32| DA
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From our assumptions on the potentials it follows that

(=P +Ix—y' )" , , c

[ dy [ dy o VOV Y V(3 S =

|x =" |x— | |x]
(3.16)

and then that
. C, Copu [ Ix] \*

H<—obt 220 () _1<u<0. 3.17
|Jcr(xa )| |x|5/2 t5/4+|x|3t<\/z lu ( )

This is sufficient to prove that also the contribution of this last term to the
integral of j, goes to zero when R — co.

We are left with the task of finding conditions on the potential and on
the initial state i, in order that the functions f;, f,, and f;, defined in
(3.15), belong to the space .%,. This goal requires explicit information on
the properties of wave operators when the system has a zero-energy reso-
nance, a completely not trivial task, see ref. 24. Explicit conditions on V'
and Y, have been found, for the case of a bounded potential, with com-
pletely different methods in ref. 19. As for unbounded potentials the
problem is still open, and discussed in more detail in ref. 9. We can there-
fore state the FAS theorem in the following form.

Theorem 3.6. Assume V e (1), for n > 15, and that the hamiltonian
H=H,+V has a zero energy resonance or/and eigenvalue. Let , €
K. (RN F(R? be such that y,, corresponds to functions f; e %,
i=1,..,3, see (3.15). Then the FAS relation (1.3) holds true, for any
T, eR.

Remark. Under suitable assumptions on the potential one may
deduce that the functions f, f,, and f; (related to ., by (3.15)) belong to
%, using convenient decay properties of y/, and the properties of the solu-
tions of the Lippmann—Schwinger equation.
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